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The Sagnac effect is an important phase coherent effect in optical and atom interferometers where rotations
of the interferometer with respect to an inertial reference frame result in a shift in the interference pattern
proportional to the rotation rate. Here, we analyze the Sagnac effect in a mesoscopic semiconductor electron
interferometer. We include in our analysis the Rashba spin-orbit interactions in the ring. Our results indicate
that spin-orbit interactions increase the rotation-induced phase shift. We discuss the potential experimental
observability of the Sagnac phase shift in such mesoscopic systems.
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I. INTRODUCTION

In the last decade, experimental developments in mesos-
copic condensed matter and atomic, molecular, and optical
�AMO� physics, such as the explosive growth in semicon-
ductor nanostructures, the creation of the atomic Bose–
Einstein condensates and ultracold atom interferometers, and
the interest in quantum computation and information, have
caused phase coherence and related phenomena to receive
extraordinary attention. Particularly interesting are quantum
interference phenomena in ballistic transport through high
mobility nanostructures in which electron propagation is de-
scribed by quantum mechanics rather than by classical trans-
port. This has lead to novel experiments with matter-wave
interferometers �MI’s� for electrons1 and quantum dot
structures2 demonstrating quantum interference between dif-
ferent paths.

Matter-wave interferometry is a key paradigm for quan-
tum interference and dates back to the early electron-
diffraction experiments. Recent advances show considerable
promise for the development of new devices, mostly because
the sensitivity of MI’s3,4 far exceeds that of their optical
counterparts for many important applications. Although both
optical interferometers and MI’s are able to detect rotations
due to the Sagnac effect, the sensitivity of atom-
interferometer �AI� based rotation sensors, however, can be
as much as Mc2 /���1010 times greater3,6 than that of opti-
cal ones.5 �Here, M is the atomic mass and �� is the energy
of a photon.� Current generation laboratory AI’s7 already out-
perform commercially available ring laser gyroscopes.5 Op-
tical gyroscopes are now used on virtually all commercial
aircrafts as well as on spacecrafts for inertial navigation. The
potential improvement for rotation sensing with AI’s, along
with their ability to accurately detect small changes in gravi-
tational fields, has resulted in intense activity within the
AMO community to develop AI sensors for inertial naviga-
tion, geophysical prospecting, and tests of general
relativity.7–9

In 1913, Sagnac demonstrated that it is possible to detect
rotations with respect to an inertial frame of reference with
an interferometer using the rotation-induced path length dif-
ference between its two arms. The phase shift is easily un-
derstood if one considers a ring shaped Mach–Zehnder inter-
ferometer of radius R rotating about its axis at the rate �. In

one arm of the interferometer, the particles are copropagating
with the rotation, which increases the distance of particles
that have to travel before exiting by �R�t. For the other
arm, particles are moving opposite to the direction of rota-
tion and the distance they must travel before exiting is de-
creased by the same amount. As a result, there is a path
length difference proportional to �.

It should, in principle, be possible to observe this effect in
another type of matter-wave device—electron interferom-
eters �EI’s�. Mesoscopic semiconductor EI’s have been pre-
dominantly used for studying transport and quantum interfer-
ence in low dimensional systems.1 Recently, there have been
a number of papers on their use to control and generate spin
currents in the presence of spin-orbit �SO� coupling.10–14 Sur-
prisingly, there has been no discussion of using them as gy-
roscopes. To date, the only experiments on the rotation-
induced Sagnac effect for electrons were done with electron
beams in vacuum.15 In comparison to optical or atom inter-
ferometers, EI’s are much smaller, can be integrated with
other solid state devices, and are in many ways more robust
due to the monolithic solid state structure.

The practical importance of the Sagnac effect for naviga-
tion combined with the technological advantages of solid
state devices raises the question as to how easily this effect
could be exploited in solid state EI’s. For electrons with ef-
fective mass m*�0.1me, the enhancement factor relative to
an optical interferometer with equal area is m*c2 /��
�105–106. On the other hand, the main disadvantage of
electron interferometers is the phase coherence length L�

� lmfp, which for electrons in solids limits the area of an
interferometer to approximately L�

2 /�. Since the rotational
phase shift is proportional to the enclosed area, this limita-
tion implies a phase shift several orders of magnitude smaller
than for current AI’s.7,9 At the same time, we note that each
order of magnitude improvement in the mean free path lmfp,
resulting from improved fabrication techniques, yields a hun-
dredfold increase in the maximum area and, as a conse-
quence, in the rotational phase shift. It is worth mentioning,
however, that recently several papers have pointed out that
the rotation-induced Sagnac effect could be observed in ar-
rays of coupled optical microring waveguides by using
“slow” light.16,17 The radius of the microrings is �10 �m,
which is only about 1 order of magnitude larger than already
demonstrated semiconductor rings for electrons and
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holes.11,18,19 Recently, the Sagnac effect has been observed in
the electronic conductance of carbon nanotube loops with
diameters of �1 �m although the origin of the Sagnac phase
difference was not due to an externally applied rotation of
the loops.20

The main goal of this paper is to investigate a way to
enhance the Sagnac phase shift to readily detectable values.
To this end, we analyze the coherent interplay of the Sagnac
effect and the Rashba spin-orbit interaction and estimate the
resulting enhancement of the Sagnac phase shift. Indeed, we
find that the interplay between the spin interference driven
by the spin-orbit interaction and the Sagnac effect results in a
larger phase shift for a given rotation rate. This increase in
the phase shift can be interpreted as a larger effective area for
the interferometer.

The paper is organized as follows. Section II establishes
the model and introduces the slowly varying envelope ap-
proximation as a mathematical technique for solving the
Schrödinger equation in the ring. To justify the applicability
of the slowly varying envelope �SVE�, we compare our re-
sults to exact numerical solutions of the Schrödinger equa-
tion for several parameter values. In Sec. III, we present the
results of our simulations and calculate the enhancement of
rotational phase shifts. We also discuss the effect of quantum
noise on the detectability of rotational phase shifts. Finally,
Sec. IV is a summary and outlook where we discuss how to
optimize the phase shift by integrating a series of EI’s into an
array.

II. THEORETICAL MODEL

We consider a quasi-one-dimensional ring of radius r0,
which could be defined in a two-dimensional electron11,18 or
hole19 semiconductor heterostructure �Fig. 1�a��. We presume
that the arms of the ring behave as a ballistic conductor �i.e.,
the length of the arms is smaller than the electron mean free
path�. The ring is coupled to two electron reservoirs with a
bias voltage V1−V2 resulting in a current I=G�V1−V2�. In
the growth direction �z axis�, which is perpendicular to the

plane of the ring, a static magnetic field B=��A and elec-
tric field E are applied. The electric field comes from the
electrostatic potential of a biased gate above the plane of the
ring and has no contribution from the static vector potential
A. Due to the applied magnetic field B, there is a nonzero
Zeeman splitting between electron spin states as well as a
finite magnetic flux through the ring that would give rise to
the Aharonov–Bohm oscillations.

In semiconductor heterostructures with structure inversion
asymmetry, such as InGaAs / InAlAs �Ref. 21� or
HgTe /HgCdTe �Ref. 11� quantum wells, the dominant spin-
orbit interaction is given by the Rashba Hamiltonian,23

Hint = 	
 · E � � = 	Rẑ · �� � �� , �1�

where 
 is the vector of the Pauli spin operators, �=p
−eA the electron momentum, and 	R=	Ez the Rashba con-
stant. For electrons traveling around the ring, E gives rise to
a momentum dependent magnetic field BR in the plane of the
ring due to the SO coupling of the electron spin with its
center-of-mass motion. An important feature of the Rashba
interaction is that the strength of the SO interaction is pro-
portional to the external electric field, which enables easy
control by the gate above the ring. The spins precess around
Bef f =B+BR �Fig. 1�b�� as they propagate around the ring.
This leads to interference between the spin directions of an
electron whose wave function is coherently split between the
two paths of the interferometer and then later coherently re-
combined upon exiting. Note that because we consider only
ballistic transport here, the Rashba term only gives rise to
coherent coupling between the spin states and does not cause
dephasing of the spin coherence due to scattering of the or-
bital wave function.

The effective one-dimensional �1D� Hamiltonian for elec-
trons �charge e�0 and effective mass m*� propagating in
ring subject to the Zeeman–Rashba coupling, with coupling
constants � and 	R, respectively, is,12,22
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FIG. 1. �a� Schematic diagram of an
electron interferometer: 1D ring of ra-
dius r0 subject to the Rashba spin-orbit
coupling and in the presence of an ex-
ternal magnetic field B. �b� Perceived
effective magnetic field Bef f =B+Br

spins while traveling around the ring.
�c� A one-dimensional array of ring in-
terferometers in series.
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where the frequencies �0=� / �m*r0
2�, �B=2�B /�, and �R

=2	R /r0, �=�r0
2B, and the flux quantum �0=h /e has been

introduced. The last term in Eq. �2� comes from a careful
derivation of the Hamiltonian for a 1D ring starting from a
two-dimensional ring and is discussed in detail in Ref. 12.
Here, we have made use of the form of the vector potential
for a uniform B field in the z direction, A=e
rB /2, to re-
express all quantities involving A in terms of the magnetic
flux through the ring.

If the ring is rotating with angular velocity � about the
axis perpendicular to the ring, the effective distance that par-
ticles have to travel before exiting the ring is increased by
�l	=r0�t	 for particles copropagating with the rotation and
decreased by the amount �l�=r0�t� for particles that are
moving in the opposite direction. Here, we assume that par-
ticles going from left to right in the upper arm �	� in Fig.
1�a� are copropagating with the rotation, while those going in
the same direction through the lower arm ��� are counter-
propagating. For small � such that �l	���� l	���, where l	���
is the path length of the upper copropagating �lower counter-
propagating� arm, then t	���= �l	�����l	���� /v� l	��� /v
=�r0 /v, where v is the velocity of the particles. This causes
a Sagnac phase difference between two counterpropagating
de Broglie waves in the ring of ��=k��l	+�l	�− �l�−�l���
=k2�r0

2� /v=2A�m* /�, where k=m*v /� is the wave num-
ber of an electron and A=r0

2� is the area enclosed by the
arms of the interferometer.6 This derivation of the Sagnac
phase shift assumes that the spin of the particle is not af-
fected by the rotation. However, in addition to the normal
Sagnac phase shift, the rotation of the ring changes the dis-
tance that the spins precess around Bef f as they propagate
along the two arms. The relative orientations of the spins
from the two arms when recombined have now been changed
as a result of the rotation. The resulting spin interference will
give a contribution to the Sagnac phase shift ��, which is a
function of � and 	Bef f	.

When the ring is rotating, the system could be described
by the same Hamiltonian as the one given in Eq. �2�, but the
point where the two counterpropagating electron waves re-
combine and interfere would change its position with time.
An easier way to analyze interference in a rotating ring is to
change the reference system in which we observe the process
from the nonrotating to the rotating one. In the rotating frame
of reference, the angular momentum of particles copropagat-
ing with the rotation is decreased, while those that are coun-
terpropagating are increased, similar to the Doppler effect.
The wave functions in the two reference frames are related

by �R= R̂�, where �R and � are the wave functions
in the rotating and nonrotating frames, respectively, and

R̂=exp�i�tn̂ ·L� /�� is the rotation operator �n̂ is the rotation

axis and L� the angular momentum operator�. Only rotations
around the axis perpendicular to the plane of the ring will
result in a relative phase shift between the two arms. For this

reason, we set L� →Lz without loss of generality. The Hamil-
tonian for an electron in the rotated frame is then given by

ĤR�
� = Ĥ1D�
� + i��
�

�

. �3�

The energy eigenfunctions can be expressed in the follow-
ing form

�R�
,t� = e−�iE/��t�R�
� = e−�iE/��t
S↑�
�
S↓�
� �eiKr0
, �4�

where S↑ ,S↓ are the angular dependent spinors for spin states
oriented along the z axis with energy E and momentum K
propagating inside the ring with radius r0. This is inserted
into the time-dependent Schrödinger equation for the Hamil-
tonian in Eq. �3�, giving us a system of second order differ-
ential equations for the envelope function S↑ ,S↓. If the enve-
lope functions are smooth functions that vary much slower
than the carrier wave,

	�S
�
�/�
	 � Kr0	S
�
�	 ,

we can neglect the second order derivatives. This is known
as the SVE approximation in optics.24 While SVE is a widely
used technique in nonlinear and atom optics, it is not com-
mon in mesoscopic transport. With this approximation, the
system becomes

i
Ṡ↑

S↓
� = − M�
aP1 − ��R

�0
�2

�b + 1�� �ab − P2�
�R

�0
e−i


�a�b + 1� − P1�
�R

�0
ei
 
aP2 − ��R

�0
�2

b� 

�
S↑

S↓
� , �5�

where dots over S↑ ,S↓ denote derivatives with respect to the
angular position in the ring 
, and

M = 
��R

�0
�2

− a2�−1

,

a = 2�Kr0 +
�

�0
−

�

�0
�, b = Kr0 +

�

�0
−

1

2
,

P1/2 = 
2
2E

��0
+ �Kr0 +

�

�0
�2

− 2Kr0
�

�0
�

�B

�0
� .

These coupled first order differential equations are numeri-
cally easier to integrate than the second order coupled equa-
tions for S
 that would be directly obtained from the
Schrödinger equation.

In the Landauer–Büttiker formalism, the zero-temperature
conductance of a ballistic conductor is given by
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G = �

�,


G
�
 =
e2

h
�

�,


�
m�,m=1

M

Tm�m

�
 , �6�

where Tm�m

�
 denotes the quantum mechanical probability of

transmission between incoming �m ,
� and outgoing �m� ,
��
asymptotic states. The labels m ,m� and 
 ,
� refer to the
corresponding orbital mode and spin quantum numbers, re-
spectively. From Eq. �6�, it can be seen how a change of the
transmission coefficients due to interference from rotation-
induced phase shifts causes a modulation of the current
through the ring. For convenience, we will restrict our dis-
cussion to a single orbital mode and drop the subscripts for
the transmission probabilities.

By specifying the spin states of the electrons when they
enter the ring, S
,	����0�, we can obtain S
�,	������� at the
end points of the interferometer arm where the wave function
is recombined. From this, the transmission coefficients T
�


and hence the conductance can be directly calculated. For
example, if spin-up polarized current enters the ring and the
wave functions are equally split between the two arms,
S↑,	�0�=S↑,��0�=1 /�2, then the probability of measuring a
spin-down electron leaving the ring on the other side is then
T↓,↑= 	S↓,	���+S↓,��−��	2 /4.

If the leads connected to the ring are unpolarized, i.e., the
leads are an incoherent mixture of spin up and down, then it
is only the total charge conductance that will be measured.
On the other hand, the field of spintronics has been making
rapid progress toward methods for generating and measuring
spin polarized currents, by such methods, as ferromagnetic
leads and the spin Hall effect.25–27 One can then imagine that
incident on the ring from the left lead is a current that is spin
polarized along the z direction, and that in the second lead,
one can measure the spin polarization of the current exiting
the ring. In this case, one is directly measuring the spin po-
larized conductances G
�
. In the next section, we consider
both scenarios.

III. RESULTS

In our simulation of the electron interferometer, we used
r0=1000 nm for the radius of ring, and for the electron, we
chose an effective mass m*=0.067m0 and wave number K
=0.1 nm−1. In addition to this, we focus on B=0 from here
on since this is expected to produce the maximal spin inter-
ference between the two arms. We solved Eq. �5� numeri-
cally using the SVE approximation, and in order to check its
validity, we did the same calculation including the second
order derivatives. The comparison between the two methods
is shown in Fig. 2, where we see that the difference between
results derived without the approximation �solid line� and
with the SVE approximation �dashed line� is negligibly
small. The SVE approximation is justified only when 1 /K is
much less than the distance over which the envelope func-
tions change significantly, which is given by the spin preces-
sion length, �SO=�� /	Rm*. In terms of 	R and K, this con-
dition is then

��K

	Rm*
� 1.

We note that the evolution matrix in Eq. �5� is strictly Her-
mitian only in the limit of Kr0→�. As a result, Eq. �5� will
only conserve the total spin probability �corresponding to
unitary evolution in 
� provided the conditions for the SVE
approximation are satisfied. Application of this mathematical
technique in the future can considerably reduce calculation
time needed for more complex problems. In particular, it
provides an alternative to other techniques currently used
such as numerical evaluation of real space Green’s
functions.14

The spatial Rabi oscillations between spin states in Fig. 2
are not of full amplitude. This is because the diagonal terms
in Eq. �5� are not the same, which means that the slowly
varying envelope functions are not degenerate. It is well
known from the theory of two-level quantum systems that
the amplitude of the oscillations between states decreases
with increasing energy difference between the states. How
this “energy difference” arises from the underlying Hamil-
tonian �Eq. �2�� can be understood by noting that to obtain
Eq. �5� for the stationary states in an arm of the ring, we have
expressed the spatial equations of motion in the form

i�
�

�

� = H̃� .

This has the form of a Scrödinger equation but with the
substitution t→
. To obtain this form from Eq. �2�, one must
multiply both sides by � ��R

2 �cos 

x+sin 

y��
−1

, which
gives rise to terms proportional to 
z.

Having found the values for S↑ and S↓, we determined the
transmission coefficients for different magnitudes of the
Rashba SO coupling and rotation rates. Figures 3 and 4
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FIG. 2. �Color online� Comparison between SVE and numerical
solution of the Schrödinger equation without SVE: probabilities for
spin-up �P↑= 	S↑�
�	2� and spin-down �P↓= 	S↓�
�	2� states along
one arm of interferometer assuming that spin-down electrons enter
that arm. Here, r0=1000 nm, QR=3, and there is no external mag-
netic field.

ZIVKOVIC et al. PHYSICAL REVIEW B 77, 115306 �2008�

115306-4



shows G↓,↓, assuming a spin-down polarized current incident
on the ring, as well as the total conductance G for unpolar-
ized currents in units of e2 /h, respectively. One can conclude
from both figures that the Rashba–Sagnac effect does not
give rise to separate contributions to the transmission phase
since the interference pattern does not lie along horizontal or
vertical lines.

Let us focus on Fig. 3, which involves only a single trans-
mission probability that can be written in the form T
,


�cos2����. Now let us assume that the phase shift can be
written as ��= f�QS�+g�QR�, where f�QS� and g�QR� are
some functions of the dimensionless rotations rate, QS
=� /�0, and the dimensionless Rashba term, QR=�R /�0. In
this case, one can see that if QR �QS� is fixed and QS �QR�
allowed to vary, which corresponds to moving along a verti-

cal �horizontal� line in Fig. 3, then the minima and maxima
of the interference pattern should lie entirely along the ver-
tical �horizontal� line. As one can see, however, the minima
and maxima of the interference pattern follow lines that de-
viate from vertical and horizontal. This indicates that the
phase of T
,
 is a nonlinear combination of QR and QS. The
preponderance of transmission minima along lines in Fig. 3
as compared to transmission maxima, which are located in
islands surrounded by zero transmission, is due to the fact
that the interference pattern depends on two functions of
QS and QR. Such an interference pattern would be
T
,
�cos2�f�QS ,QR��cos2�g�QS ,QR�� where curves of zero
transmission correspond to f�QS ,QR� or g�QS ,QR� being a
half-integer multiple of �.

In the case of spin polarized transport, the rotational phase
shift �� can be uniquely equated with the phase of the in-
terference pattern in Fig. 3 since it results from only a single
transmission probability. In Fig. 5, we have extracted �� as
a function of � for different values of QR from our numerical

FIG. 3. �Color online� Spin polarized transmission coefficient
T↓,↓ for an electron propagating through EI for B=0, for different
values of the Rashba SO coupling strength �QR=�R /�0� and the
Sagnac strength �QS=� /�0�. This is the probability that an electron
with spin down at the entrance of the ring has the same spin when
it exits the ring

FIG. 4. �Color online� Total conductance in units of e2 /h for an
electron propagating through EI for B=0 and different values of the
Rashba SO coupling strength �QR=�R /�0� and the Sagnac strength
�QS=� /�0�.
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FIG. 5. �Color online� �a� Sagnac rotational phase shift as a
function of the rotation rate QS=� /�0 for different values of the
Rashba SO interaction strength QR. Phase shift �� is in units of �
radians. �b� Dimensionless enhancement factor � as a function of
QR. Dots are slopes of the curves in �a� as well as for other values
of QR, not shown in �a�. The solid line is a numerical fit to the
points.
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results for T↓,↓. The Sagnac phase shift with no Rashba effect
is given by the dash-dotted line, which is indistinguishable
from the line for QR=5 �thick solid line�. This confirms that
for weak SO coupling �QR�10�, there is only negligible
mixing between the SO coupling and the rotational phase
shift. For higher values of QR, the mixing becomes stronger,
which is manifested by a steeper slope. Our numerical results
indicate that the rotation-induced phase shift is approxi-
mately

�� � �2�r0
2�m*/� , �7�

where ��1 is an enhancement factor due to the SO cou-
pling, which is shown in Fig. 5�b� and for which a numerical
fit yields

��QR� � 0.9 exp�0.007QR� + 0.003 exp�0.05QR� .

By increasing QR, it is possible to more easily detect small
changes in the angular velocity.

By contrast, the total conductance involves a summation
of four transmission probabilities that do not necessarily os-
cillate in phase with each other. In this case, it is harder to
define the rotation-induced phase shift. However, the quan-
tity that is of most interest experimentally is how much the
conductance changes due to a small change in QS, �G
���G /�QS��QS. This allows us to define an enhancement
�G,

�G�QR� =
��G�QR,QS�/�QS�max

��G�QR = 0,QS�/�QS�max
, �8�

where max means the maximum magnitude of the slope for
fixed QR. It is worth noting that if we assume a simple inter-
ference pattern of the form G=A cos2���� and use �� in
Eq. �7�, then we obtain from Eq. �8� �G=�, which shows that
Eq. �8� is consistent with our definition of � for the spin
polarized case. Figure 6 shows �G as a function of QR. As
one can see, �G�� for all QR. Thus, the enhancement can
just as easily be seen in the total conductance. Finally, the
inset of Fig. 6 shows the oscillation frequency for the inter-
ference pattern in G for different values of QR �moving along
vertical lines in Fig. 4�. As one can see, the oscillation fre-
quency increases more rapidly than �G. This is because the
amplitude of the oscillations decreases at a rate that is
smaller than the rate of increase in the frequency. As a result,
�G increases but more slowly than the oscillation frequency.

The enhancement factors, � and �G, are a result of the
different spin orientations of electrons created in the two
arms. The spin of electrons going through the upper arm
precesses around Bef f by a larger angle before exiting as
compared to the lower arm. This is due to the longer path
length of the upper arm. As a result, the orientations of the
spins from the upper and lower arms are different when re-
combined at the second lead, and this imbalance in the spin
precession angles changes the spin resolved conductances.
Recently, it was demonstrated28 that by using holes instead
of electrons, it is possible to increase the strength of the
Rashba interaction by about 3 orders of magnitude. Based on
the results presented here, such extremely large Rashba
strengths �QR�1000–10 000� should lead to the Sagnac

phase shifts that are orders of magnitude larger than shown
here. However, for such large QR, the SVE approximation
breaks down and new numerical techniques must be sought.

The minimum detectable phase difference in matter-wave
interferometers, �
min, is determined by the quantum fluc-
tuations in the measured phase difference. These fluctuations
are the result of the partition noise �also referred to as shot
noise� that results from the splitting and recombining of the
particles at the beam splitters. For uncorrelated particles, the
noise is Poissonian and the minimum detectable phase shift
is6

	�
min	 =
1

�N
, �9�

where N is the total number of particles that pass through the
interferometer during the measurement time. This result ig-
nores quantum statistics. If quantum statistics are accounted
for, it is found that 	�
min	 continues to scale like N−1/2 for
bosons and fermions.29 The number of electrons passing
through the ring per unit time is proportional to the current
through the ring I. By equating the rotational phase shift with
the shot-noise limited minimum detectable shift, 	��	
= 	�
min	 and using Eqs. �9� and �7�, we find that the mini-
mum detectable rotation rate �min is

�min �
�

�2�r0
2m*

� Itm

	e	 �
−1/2

, �10�

where tm is the measurement time. Strong SO interaction
yields ��1 and reduces �min accordingly. However, even if
we take �=1 corresponding to no SO interactions and a ring
of radius 10 �m with I=100 nA, one finds that �min
=3.48tm

−1/2 rad /s with tm measured in seconds. The quantum
shot noise represents the only fundamental physical limit to
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FIG. 6. �Color online� Dimensionless enhancement factor for
the total conductance, �G= ��G�QR ,QS� /�QS�max / ��G�QR

=0,QS� /�QS�max, as a function of QR. Dots are numerically calcu-
lated values of �G for different QR. The solid line is a numerical fit
to the points. The inset, ���QR�=T�QR=0� /T�QR�, is the frequency
of the oscillations in G as a function of QS for different QR. Here,
T�QR� is the period of the oscillations in G for fixed QR as QS is
increased.
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the phase resolution. However, even if the ring itself is lim-
ited only by shot noise, the electrical current from the ring
must be amplified to more readily detectable values. Current
cold amplifiers have noise that is still well above the shot-
noise limit although recent experiments have demonstrated
novel very low noise mesoscopic amplifiers based on single
electron transistors30 and the Josephson junctions.31 Also,
theoretical work has shown how to reach the quantum limit
in linear electronic amplifiers.32 It is then reasonable to as-
sume then that future generation amplifiers will reach the
quantum noise limit.

IV. CONCLUSION

Here we studied the Sagnac effect in solid state electron
ring conductors. We have demonstrated that the SVE
approximation is justified for typical spin-orbit coupling
strengths and also shown that the Rashba spin-orbit interac-
tion can enhance the sensitivity of rotation measurements.
The spin-orbit enhancement can be regarded as an increased
effective area for the interferometer. Moreover, our estimates
indicate that the Sagnac phase shift can easily be made larger
than the quantum shot-noise limit, which is the only funda-
mental obstacle. It is our hope that this work will stimulate
further interest in this problem and that next generation ex-
periments will be able to measure the Sagnac effect in semi-
conductors.

Another possible method for enhancing the Sagnac effect
is to use a serial array of N ring interferometers, as depicted

in Fig. 1�c�. Transport within each ring is assumed to be
ballistic. In this case, the resistivity of the rings �ignoring the
contact resistance and the resistance of the channels connect-
ing the rings� is given by �ignoring, for the sake of simplicity
here, spin dependent transport�33

Grings
−1 =

h

2e2�
i=1

N
1 − Ti

Ti
=

h

2e2�
i=1

N

tan2����i�/2� , �11�

where Ti=cos2����i� /2� is the transmission probability
through the ith ring with the Sagnac phase shift ���i�. For
small phase shifts and ignoring differences between the
rings, one sees that the resistance is Grings

−1 �N��� /2�2. If we
do not assume ballistic transport between the rings, this de-
vice should be scalable to large N since then the total size of
the array can be �lmfp. Even though the phase shift in each
ring may be too small too measure, the effect is compounded
as the electron passes through each successive ring resulting
in a phase shift that is enhanced by �N in comparison to that
of a single ring. A similar idea was proposed for light propa-
gating coherently in a two-dimensional array of coupled mi-
croring optical waveguides17 where the enhancement relative
to a single ring was found to be N2. One of our goals in a
future publication is to explicitly calculate the contribution to
the resistance due to the channels connecting the rings as-
suming either incoherent transport or ballistic transport be-
tween rings as well as the effect of SO coupling in the rings.
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